
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijmulflow

International Journal of Multiphase Flow 34 (2008) 447–460
Analysis of the unconventional behavior of oil relative
permeability during depletion tests of gas-saturated heavy oils

Maria C. Bravo a,*, Mariela Araujo b

a Applied Research Center, Florida International University, 10555 WFlager Street, EC 2100, Miami, FL 33174, USA
b Shell E&P Co, Two Shell Plaza 2225A, 777 Walker Street, Houston, TX 77002, USA

Received 15 May 2007; received in revised form 5 October 2007
Abstract

The description of two-phase flow in porous media is traditionally based on Darcy’s equation. Accordingly, effective permeabilities to
each phase are expected to be smaller than absolute permeabilities, and also they determine each phase mobility. A typical behaviors such
as oil relative permeabilities values larger than one, can be obtained during depressurization experiments of heavy oil saturated porous
media when the data is analyzed under the conventional Darcean approach. Such an unconventional behavior is physically possible con-
sidering that the Darcean approach disregard several flow sources such as viscous coupling derived from the momentum transfer between
the phases. Oil relative permeabilities larger than one, which actually are apparent values, could represent one of the most convincing
evidence of the role of viscous coupling on two-phase flow in porous media. In this paper we present experimental indication of such
unconventional behavior and show how it can be properly understood when taking into account the viscous coupling contribution
on each phase mobility. Pore network simulations are used to complement the analysis and evaluate the effect of the capillary number
on the transport parameters involved in the generalized flow equations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The macroscopic description of the flow of two immisci-
ble fluids in porous media has been intensely studied in
recent years in attention to the variety of scientific and
engineering problems that require its detailed comprehen-
sion (Chen and Keh, 1998; Karpyn et al., 2007). Particu-
larly in the oil industry, the modeling of the transport of
two and three fluid phases is a key element in the prediction
of production resulting from any recovery process going
from primary to enhanced oil recovery of subsurface fluids
(Dullien, 1992; Sahimi, 1993; Vizika et al., 1994). The inter-
play between the microscopic governing physics and the
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macroscopic behavior is one of the most important and
complex issues relative to this endeavor since the small-
scale physics is represented by average parameters in mes-
oscopic differential equations (Hilfer, 1996).

Relative permeability, one of the mesoscopic parameters
involved in the description of the simultaneous flow of flu-
ids in porous media, represents the fraction of the perme-
ability of the porous medium corresponding to each
phase (Donaldson and Tiab, 2003). In other words, it is
the effective permeability to a particular phase divided by
the porous medium permeability. This concept emerges
from the extension of Darcy’s equation from single-phase
flow to two-phase flow and by definition, it is not expected
to be larger than one (Corey, 1994).

The validity of Darcy’s equation for two-phase flow is
based on the fulfillment of some conditions commonly
assumed, among which are that a unique set of flow paths
exist for each saturation value and when either fluid
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Fig. 1. Schematic of experimental design. 1 – core-holder; 2 – pump; 3 –
pressure transducers; 5 – high pressure cylinder; 6 – oil/gas separator; 7 –
temperature controlled camera; 8 – TV monitoring system; 9 – computer;
10 – valves. Adapted from Tang and Firoozabadi (2003).
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becomes discontinuous in the flow domain, no flow of this
fluid takes place (Bear, 1988; Whitaker, 1986a). The last
assumption does not consider that momentum transfer
can induce movement from the continuous phase to the
discontinuous phase, a phenomenon well captured in the
generalized flow equations derived by Whitaker (1986b),
Kalaydjian (1987, 1990). Thus, relative permeability exper-
imentally obtained through Darcy’s equation, is anchored
to a physical interpretation that does not allow results such
as relative permeability values larger than one.

We gathered a number of experiments that evidence that
relative permeabilities values larger than one can be
obtained under particular flow conditions (Tang and Fir-
oozabadi, 2003; Maini and Sarma, 1994; Andarcia et al.,
2002). These experiments were done to improve the under-
standing of how the depressurization process of saturated
heavy oil (with dissolved gas) in a porous medium would
impact the oil and gas production rate. Even though in
all cases the authors overlook ‘‘oil relative permeability val-
ues larger than one” obtained from their experiments, it is
clear that a careful analysis of such unconventional results
would warrant an improved understanding of the ‘dynam-
ics’ of ‘foamy oil’ (Chen, 2006).

In this paper we perform a detailed analysis of reported
experimental data by assessing their basic experimental
conditions, and the evolution of the flow regime during
the tests. The analysis evidences the consequences that a
conventional interpretation of experiments has on the
description of bubbly-oil flow through porous media and
its predictions.

We demonstrated in a previous work (Bravo et al., 2007)
that relative permeabilities larger than one can be obtained
due to the contribution of momentum transfer between
two-phases by explicitly considering the generalized flow
equations with a viscous coupling term. In this work we
review the dynamic conditions under which this theoretical
result could explain the aforementioned experimental find-
ings. We perform pore network simulations to determine
the impact of the flow regime and the oil viscosity on the
unconventional behavior of relative permeability.

2. Analysis of experiments

2.1. Characteristics of experiments

Experiments to study the dynamics of two-phase flow
that occurs during depletion of heavy oil reservoirs intend
to reproduce at lab scale the real flow at reservoir condi-
tions. Usually, cylindrical flow symmetry is assumed at
field scale and consequently the flow rate is proportional
to the inverse distance to a well. Experimentalists consider
very difficult to reproduce this geometry in the lab and
instead they work in a lineal geometry.

Fig. 1 illustrates the experimental setup used by Tang
and Firoozabadi (2003) to study depressurization of satu-
rated heavy oil in porous media. This setup can be consid-
ered standard for this type of experiments. The most
relevant aspects that vary among the different experimental
settings reported by different authors are the angle between
the axial direction of the core-holder and the gravity accel-
eration direction (u), the sample dimensions (Length, L

and cross sectional area, A), the transparency of the core-
holder and the number of pressure transducers placed
along it. The sample is typically a core plug or a sandpack
with a specific saturation condition.

In general terms the experimental procedure consists in
flooding the core or sandpack with oil until achieving
steady state in pressure and flow conditions, then the sys-
tem is opened for production by blowing down the pressure
through the outlet end, while no flow is allowed through
the inlet. Notice that this procedure is different from the
one followed in external gas drive tests and it is more rep-
resentative of the internal gas drive production mechanism.
Measurements are performed when a quasi-stationary state
is reached, which allows considering a nearly constant pres-
sure gradient along the sample.
2.1.1. Experiment by Tang and Firoozabadi

In Tang and Firoozabadi experiment, a saturated pres-
surized sandpack is submitted to depressurization, which
is initiated at a pressure of 4915.9 kPa. Initially, the deple-
tion test occurs at 2 cm3/day. When an expansion volume,
DV = 50 cm3, is reached, the rate is increased to 3 cm3/day
and from DV = 75 cm3 to the end of the test, the rate is
fixed to 4 cm3/day. When the gas begins to break through,
the gas and unsaturated oil production are measured with
an ISCO pump and the gas/oil separator (the first 6 cm3

were measured in the graduated window located at the
top of the core-holder). The fluids and sandpack properties
relative to this experiment are given in Table 1. The oil vol-
ume factor is considered equal to one and consequently,
the produced gas volume is calculated from the difference
between the expansion volume (read in the pump) and
the produced oil volume. Gas and oil production are mea-
sured every 0.01 pore volumes (PV) and the pressure and
differential of pressure are automatically recorded every
minute in the computer. Authors do not make reference
to the change of oil viscosity with pressure during the test,
and in fact they assumed a constant viscosity in their



Table 1
Saturated oil and sandpack properties corresponding to the experiments: Tang and Firoozabadi (2003), Maini and Sarma (1994) and Andarcia et al.
(2002)

Tang and Firoozabadi (2003) Maini and Sarma (1994) Andarcia et al. (2002)

2% Clay 5% Clay

Oil density (qo), kg/m3 980 968 1013 1013
Viscosity (lob), Pa s 9.20 3.01 2.00 2.00
Bubble point pressure (Pb), kPa 2530.4 4826.3 7549.8 7549.8
Gas/oil initial ratio (Rsi), vol/vol 6.5 14.8 18.7 18.7
Core-holder angle (u), Rad p/2 0 0 0
Core-holder external wall Clear Opaque Opaque Opaque
Length (L), m 0.536 2 0.50 0.50
Area (A), cm2 31.65 16.1 23.75 23.75
Sand Ottawa Ottawa Synthetic Synthetic
Porosity (/), % 35.6 33 41 39
Permeability (k), Darcy or �10�12 m2 13.7 3.5 3.48 1.78
Grain diameter (d), lm 212–355 74–105 180 92
Initial water saturation (Swi), % 0 2 7 9
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calculations. This assumption may introduce significant
errors in the estimation of oil relative permeabilities.

2.1.2. Experiment by Maini and Sarma

A sandpack, 98% filled with saturated oil, was depres-
surized by blowing down the pressure at the outlet end
(Pout) to the atmospheric value. The experimental setup is
similar to the one shown in Fig. 1, but in this case five pres-
sure transducers were located every 40 cm along the core in
order to monitor the pressure gradient. Fluids properties
and other data corresponding to this experiment are given
in Table 1. The authors reported the unsaturated oil viscos-
ity as 8.580 Pa s.

2.1.3. Experiment by Andarcia et al.
The sandpack was flooded with saturated oil. Two

experiments were performed, one for sand with 2% of clay
(Kaolin) and the other with 5%. The sandpack was
depleted from an initial pressure of 8273.7 kPa. The total
production rate at the outlet was 0.66 cm3/h, while the inlet
was kept closed during the whole test. Relevant properties
of fluids and sandpack are offered in Table 1. In this case
no reference is made to the variation of oil viscosity with
pressure.

2.2. Differential pressure. Measured vs. average macroscopic

value

The pressure measured in experiments, when the gas
phase is in the form of bubbles, may be different from
the macroscopic pressure explicitly appearing in the flow
equations derived by Kalaydjian through the principles of
irreversible thermodynamics or by Whitaker through the
method of volume averaging. Both approaches treat the
two-phase flow on a macroscopic scale under a local equi-
librium assumption. This means that they describe the fluid
motion at the level of locally averaged variables so that, for
example, even when there is a density gradient in the sys-
tem, at any position (x,y,z), a local density value,
q(x,y,z), can be defined. In principle, different types of
averaging may be used to determine the q value. According
to spatial averaging, the density at (x,y,z) is defined as the
ratio of mass to volume for a sphere centered at this point,
such that it is large enough to include large number of par-
ticles (so that density fluctuations can be neglected) and
small compared to the macroscopic scale (Bear, 1988).
On the other hand, if an ensemble averaging is used
q(x,y,z), is the arithmetic mean of the actual density of
the fluid occupying the point (x,y,z) for each of a large
amount of macroscopically equivalent systems (Jackson,
2000). Similar definitions apply to any other measurable
parameters like the pressure.

Kalaydjian’s equations are not formally tied to local
spatial averages and in principle other procedures of aver-
aging, such as time average and/or ensemble average could
be considered to get macroscopic quantities. However,
from the description of the experiments in the previous sec-
tion, it can be anticipated that in depressurization experi-
ments the local spatial average is closer to the quantities
derived from the physical process of measurement. To illus-
trate this, consider for example, the pressure. From the
point of view of time-averaging, the measured pressure will
correspond to a time averaged pressure if the measurement
were performed during a period of time sufficiently large to
sample all of the possible pressure values; however, this is
not the case in these experiments. On the other hand, the
ensemble average is not expected to correspond to the mea-
sured pressure either, since no sampling over a set of mac-
roscopically equivalent systems is carried out in the
previously described experiments.

Local spatial average over an averaging volume repre-
sentative of the measurement window is the method of
averaging that generates a pressure closer to that obtained
from depressurization experiments and only if the ergodic-
ity hypothesis can be demonstrated both, spatial and
ensemble averages will be the same (Jackson, 2000). In
the depressurization experiments, as in the case of steadily
bubbling fluidized bed studied by Jackson (2000), these two
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averages could be very different, given that phenomena like
bubbles nucleation, growth, coalescence and breakup may
be irreproducible by manipulating the macroscopic vari-
ables. In other words, the flow could be extremely sensitive
to the initial and boundary conditions in depressurization
experiments, and consequently an independent observation
of the system, like performed in these experiments, would
not be even a sample of the ensemble. Drew and Passman
(1999) and Jackson (2000), though with different objectives,
discussed well the difficulty of getting an ensemble average
in actual measurements where the flow is sensitive to small
changes in the initial conditions, boundary conditions and
the sources terms.

On the other hand, the generalized flow equations
derived by Whitaker are subordinated to the basic require-
ments of the application of a continuum approach to por-
ous media (Bachmat and Bear, 1986; Bear, 1988) and the
use of the average volumetric theorem may or may not
be valid depending on the bubble size evolution and its dis-
tribution, since it might not be possible to even define a
representative elemental volume (REV).

To apply such a continuum description, average values,
calculated on a REV, should be independent of its dimen-
sions and they and their derivatives should be continuous
functions of time and space. Fig. 2 illustrates an idealiza-
tion of a porous medium saturated with oil and gas (bub-
bles). Fig. 2a shows uniformly distributed gas bubbles
where a REV can be defined, whereas Fig. 2b shows a
non-uniform bubble distribution, where a REV can not
be defined because the average values will depend on the
dimensions of the volume (for example, the average density
of the gas phase varies depending on what volume V1 or
V2, is used in Fig. 2b) and also the continuity of the deriv-
atives to first and second orders are not guaranteed.
Increasing the REV dimensions is not an alternative, given
that it may become comparable with the system character-
istic dimension, L (as V3 in Fig. 2b). Thus, when the
Fig. 2. Two different forms of bubbles distrib
bubbles are not uniformly distributed, the measured quan-
tity does not correspond to the average parameter involved
in the macroscopic flow equations based on the continuum
approach, and a conceptual difficulty arises.

In a homogeneous porous medium, when the pressure
drops below the bubble point pressure, bubble nucleation
occurs randomly in space (Firoozabadi and Kashchiev,
1996; McDougall and Sorbie, 1999) and a uniform distri-
bution of bubbles can be supported in many cases at the
first stages of depletion. When the flow progresses, in addi-
tion to nucleation other phenomena such as bubble
growth, coalescence and breakup determine the bubble dis-
tribution in the porous medium. Some visualization of
heavy oil depressurization experiments have evidenced that
nearly uniform bubble distributions are sustained during
the entire test (Bora et al., 2000; Lago et al., 2002; Tang
and Firoozabadi, 2003). In fact, in heavy oil, the coales-
cence of bubbles is disadvantaged due to the high viscosity
of the oil (Joseph et al., 2002), nucleation on the contrary is
advantaged (Bauget et al., 2001) and the competition
among these phenomena and the bubble breakup finally
results in the gas phase flowing as bubbles in heavy oil,
while in light oil, a fingering pattern of the gas phase is
observed for identical depletion conditions (Lago et al.,
2002).

Returning to the previous discussion on the conditions
for the use of the continuum approach, the experimental
equivalent of the REV is the ‘‘measurement window”,
hence the uniformity condition and scale restrictions
should be satisfied at the scale of this window. For an
experimental setup as the one illustrated in Fig. 1, the area
A, whose value for each experiment is given in Table 1, cor-
responds to the ‘‘measurement window” and the variations
of differential pressure shown in Fig. 9 of Tang and Fir-
oozabadi (2003) represents an example of the consequences
of not satisfying the conditions required for a continuous
description of the differential pressure. This is particularly
ution. (a) Uniform and (b) non-uniform.
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true, if other possible sources of fluctuations, such as inap-
propriate experimental setup and/or inaccuracy of the pres-
sure transducer, can be ignored. Tang and Firoozabadi
(2003) do not report such problems in their experiments,
while Andarcia et al. (2002), attributed the fluctuations of
differential pressure to variation of temperature and thus
variation in the oil viscosity. Certainly, variation of viscos-
ity due to a ±2 �C change of temperature could cause fluc-
tuations in pressure drop as high as 30%; however, Tang
and Firoozabadi (2003) reported that temperature is con-
trolled in their experiment with an accuracy of ±0.1 �C.
Also, they observed that once the first bubble appeared
in the surface of the core-holder the differential pressure
jumped from 0.5171 kPa (corresponding to single-phase
flow) to 0.6895 kPa (for DV = 11.85 cm3). The pressure at
the outlet and the differential pressure begin to fluctuate
after this point. Authors refer that for 70.01 cm3 around
70% of the bubbles were connected. Fig. 10 of Tang and
Firoozabadi (2003) evidences that such connectivity means
the formation (via coalescence) of relatively large bubbles,
which still are much smaller than the axial dimension of the
sandpack. Thus, the fluctuations of pressure drop observed
in Fig. 9 of Tang and Firoozabadi (2003) can result from
the non-compliance of the conditions required for a contin-
uous description due to intermittent presence of gas in the
measurement window.

In principle, the macroscopic pressure drop is measured
in the connected phase (oil at the beginning of the test) and
it is given by the difference of oil hydrostatic pressures at
outlet (PoOut) and inlet (PoIn) of the sandpack. With the
progress of the Tang and Firoozabadi (2003)(’s experi-
ment) the gas bubbles appear and their dimension increase.
If we define a critical bubble dimension as a bubble whose
dimension is comparable with area A and such a bubble is
considered at the measurement window when part of it is
inside of the sand pack (in the porous space) and the other
part outside (in the flow line) as illustrated in Fig. 3, the
location of oil and gas bubbles with respect to the measure-
ment window determines that four conditions may take
place in the experiment. Considering that Po1 and Pg are
the oil and gas hydrostatic microscopic pressures, the four
Fig. 3. Magnified visualization of a bubble at the ‘‘measurement
window”. Pores are represented by capillaries, with dimensions much
larger than the real ones and solid particles are in correspondence with the
pores capillary representation. Notice that at one side of the interface 1,
the pressure is Po1 = Pg � Pc, while at the other side it is Pg.
conditions and their consequences for the measured differ-
ential pressure are:

(a) Oil at inlet and outlet of sand pack. This occurs ini-
tially, when there are not bubbles in the sandpack,
or at later stages, if no bubbles with critical dimen-
sion are located in the measurement window by the
time of pressure measurement. In this case, the differ-
ential pressure is DPo = PoOut � PoIn.

(b) Oil at inlet and bubble at outlet measurement win-
dow. If the bubble has critical dimensions, the differ-
ential pressure will suffer an abrupt increase to
represent the difference, (Pg � Po1) + DPo.

(c) Oil at outlet and bubble at inlet measurement win-
dow. If the bubble has critical dimensions, the differ-
ential pressure will suffer an abrupt decrease to
represent the difference, (Po1 � Pg) + DPo.

(d) Bubbles, with critical dimensions, at the inlet and out-
let of the measurement window at the moment of pres-
sure detection. Considering that capillary pressure is
the same at both sandpack’s ends, as expected in
homogeneous sandpacks, the obtained value would
correspond to the microscopic differential pressure
DPo = PoOut � PoIn. Notice that the critical dimen-
sion of a bubble is negligible with respect to the sand-
pack’s dimension, L and if the bubble’s dimension
tend to be comparable with L, then DPo ? 0.

The microscopic capillary pressure is related to the pore
radius at the location of the interface. Thus for the type-1
interface illustrated in Fig. 3, the microscopic capillary
pressure is given by Pc = Pg � Po1 and the variation of dif-
ferential pressure in case (b) and (c) corresponds to
Pc + DPo and �Pc + DPo, respectively. Therefore, fluctua-
tions with amplitudes equal to 2Pc will be observed. For a
bubble with critical dimension several interfaces will be
located in different pores and considering that there is a dis-
tribution of pore sizes in the sandpack, a distribution of
microscopic capillary pressure is expected. Thus, the max-
imum amplitude of the fluctuations in Fig. 9 of Tang and
Firoozabadi (2003) should correspond to 2hPci, where hPci
is the average or macroscopic capillary pressure in the
sandpack.

Fig. 4 illustrates the amplitude of the fluctuations esti-
mated from Fig. 9 of Tang and Firoozabadi (2003), as a
function of the expansion volume and outlet pressure.
The increasing trend of the fluctuations indicates an
increase of capillary pressure with a decrease in P. In this
experiment a layer of 1.5 cm of coarse sand, with grain size
of 600–800 lm was placed at the top of the sandpack to
prevent gas holdup under a stainless steel screen with an
opening of 425 lm. Thus, in the earliest stages of fluctua-
tions, the bubbles are mostly sampling the porous space
of this layer, while at later stages they will be sampling
the porous space of the sandpack. A transition region,
between the two porous spaces is expected to be apparent
as indicated by the smooth increase of the magnitude of



Fig. 4. Amplitude of differential pressure fluctuations, obtained from Fig. 9 of Tang and Firoozabadi (2003), vs. the expansion volume and pressure at
outlet.
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the fluctuations observed in Fig. 4. The fluctuations reach a
maximum value, which in principle would remain approx-
imately constant for subsequent stages of the experiment
unless bubbles dimensions become comparable with the
sandpack dimension L; however, the beginning of declina-
tion of the amplitude observed in Fig. 4, from DV =
110 cm3, indicates that these events started to occur.

According to the equation of Young and Laplace, for
the cases of a spherical interface of radius a, inside of a cap-
illary of radius r, the macroscopic capillary pressure is
given by (Lyklema, 1991)

hP ci ¼ 2
r
a

D E
¼ 2

r
r

cos h
D E

ffi 2
hri
hri hcos hi; ð1Þ

where h is the contact angle and the angular brackets indi-
cate average values. The last equality on the right of Eq. 1,
is an approximation that assumes narrow distributions of
r, h and r in the sandpack. Given the properties of the Ot-
tawa sand used in the Tang and Firoozabadi (2003) exper-
iment, we consider that this is an acceptable approximation
for the current study.

Fig. 4 and the previous analysis indicates that
2hPci ffi 0.35 psi. In addition, the oil-wet condition implies
that cosh values are in the range from 0.8 to 1, therefore
hcoshi = 0.9 can be considered. On the other hand, since
Ottawa sand is typically formed by rounded grains, the
average pore radius can be estimated according to the level
of packing of the sandpack. For example, for a cubic pack-
ing (in which each sphere sits directly on the crest of
another sphere) the pore radius would be around 0.4 times
the radius of the particles, while for rhombohedral packing
(the spheres lie in the hollows formed by two adjacent
spheres) this number is reduced to 0.15. We consider that
most of larger and smaller pores are associated to the cubic
and rhombohedral packings, respectively. From Table 1,
we estimate an average grain radius of 141 lm and
according to the packing level we infer that pores radii
are between 56 lm (for cubic packing) and 21 lm (for
rhombohedral packing). According to the porosity value
of the sandpack (Perunicic and Babin, 2001) we may
consider an intermediate packing and consequently
hri = 38 lm.

Substituting the previous average values into Eq. 1, we
estimate the average oil–methane interfacial tension to be
around 41 mN/m. This is a realistic value for heavy oil–
methane, considering that reported values are in the range
from 20 to 45 mN/m (Lara, 1998). This calculation was
helpful to verify that the maximum amplitude of the fluctu-
ations corresponds to 2hPci; however, we suggest caution
when using the approximations related to the last equality
on the right of Eq. (1), in cases where more accurate esti-
mations are needed.

The previous analysis indicates that the physical mean-
ing of the experimentally obtained pressure and the macro-
scopic pressure could be different in conditions where
bubble nucleation, growing, coalescence and breaking
occur during the flow process. Other depressurization
experiments have shown similar fluctuating behavior of
the experimental pressure (Andarcia et al., 2002; Tang
et al., 2006); but the conceptual problem involved has not
been addressed. Tang and Firoozabadi (2003) assumed
that an average curve corresponds to the macroscopic dif-
ferential pressure involved in the flow equations, which is
not necessarily true. Notice that if the four cases discussed
above have a probability of occurrence fi, with i varying
from 1 to 4 for cases (a) to (d), respectively and assumingP4

i¼1fi ¼ 1, the average curve considered by Tang and Fir-
oozabadi (2003) corresponds to

DP o ¼ f1ðP c þ DP oÞ þ f2ð�P c þ DP oÞ þ f3DP o þ f4DP o

ð2Þ

where, it has been considered that DPc = 0, so DPg = D Po.
For the particular case where f1 = f2 = f3 = f4

DP o ¼
P c þ DP o � P c þ DP o þ DP g þ DP o

4
¼ hDP oi ð3Þ
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which evidences that in this case the average curve
proposed represents the macroscopic pressure gradient in-
volved in the flow equations. However, if the probabilities
of occurrence are different, which is possible for a non-uni-
form bubble distribution, the mentioned average curve
does not correspond to the macroscopic pressure gradient.
For instance, the particular situation where f1 = f3 = f4 = f

and f2 = 10f, Eq. (3) gives

DP o ¼ hDP oi �
9

13
P c ð4Þ

Thus, an average curve would be underestimating the mac-
roscopic pressure drop by 9/13Pc.
Fig. 5. Capillary number estimated from Eq. (8) for the analyzed
experiments.
2.3. Apparent oil relative permeability

In this section we present the apparent oil relative per-
meability curves obtained from data reported by three dif-
ferent experimental groups: Tang and Firoozabadi (2003),
Maini and Sarma (1994) and Andarcia et al. (2002). The
term ‘‘apparent” is given to the relative permeability value
obtained from the conventional Darcean approach (Bravo
et al., 2007). The saturated oil viscosity for each experiment
is offered in Table 1 and the dependence of oil viscosity, l,
with pressure, P, for P < Pb, is considered to follow a
Khan-type correlation (Khan et al., 1987):

lðP Þ ¼ lob exp½�aðP � P bÞ� ð5Þ

where, the bubble pressure (Pb) and the oil viscosity at this
pressure (lob) are listed in Table 1 for each experiment here
analyzed. For heavy oil, a = 0.221695 MPa�1 as obtained
through Maini and Sarma (1994).

Apparent oil relative permeabilities from Darcy’s equa-
tion, are given by

krap
o ¼

loðPÞlQ=n
kAðDP þ qogL sin uÞ ð6Þ

where Q is the volumetric flow rate at the outlet of the
sandpack and DP/l is the pressure gradient along the sand-
pack length, l. The parameter n considers that the relation
of DP/l with Q depends on how representative is Q of the
average volumetric flow through the segment l. For Tang
and Firoozabadi (2003) and Andarcia et al. (2002) experi-
ments, l = L and consequently n = 2. However, for Maini
and Sarma (1994), the pressure gradient is known for six
sandpack segments and consequently l = L/6. In this case
we consider the pressure gradient corresponding to the seg-
ment closest to the outlet, hence n = 1. Table 1 presents the
values of oil viscosity at bubble point pressure lob, the
sandpack length L, permeability k, area A, density qo,
and angle u for each experiment.

Gas saturation was estimated (when not reported by the
authors) by material balance

Sg ¼ 1� So with So ¼
V oðP r;T rÞ

Boi � Qcum

� �
Bo

V p

ð7Þ
where, Vo(Pr,Tr) is the oil volume in the sandpack at reser-
voir pressure and temperature, Qcum is the cumulated oil
production, Bo is the oil formation volume factor (oil vol-
ume at P, T divided by oil volume at standard conditions)
and Vp is the porous volume.

The flow regime at which each experiment was done is
very relevant to get an adequate physical understanding
of the results. We estimate the capillary number for each
experiment using:

Ca ¼ ðDP þ qogL sin uÞ=Np
Pc

ð8Þ

where, DP is the difference Pin � Pout; qo is the oil density, g

is the gravity; u is the axial angle with the normal to the
gravity (see Fig. 1); Np is the number of solid particles in
a line parallel to the pressure gradient direction (estimated
as L/d; with d as the particle diameter); and Pc is the cap-
illary pressure, obtained from Eq. (1) considering h = 0,
interfacial tension of 0.036 N/m and the pore radius is
taken as 0.4d.

Fig. 5 illustrates the evolution of the capillary number
with gas saturation for each experiment. Notice that in
Andarcia et al. (2002) and Tang and Firoozabadi (2003)
experiments, the capillary number was around 10�3,
whereas in Maini and Sarma (1994) experiment this num-
ber was between 10�1 and 10�2 for the same range of gas
saturation. Visualization of the bubbles dynamics in the
Tang and Firoozabadi (2003) experiment indicates that
capillary forces are not governing the flow dynamics.
According to this and considering the similarity on
dynamic conditions of the Andarcia et al. (2002) and Maini
and Sarma (1994) experiments, we infer that these experi-
ments were performed under a predominantly viscous flow
regime. In the next section we analyze the dependence of
the flow regime with the capillary number, calculated via
Eq. (8), from pore network simulations.

Oil relative permeabilities obtained from Eq. (6) calcu-
lated using reported experimental data are depicted in



454 M.C. Bravo, M. Araujo / International Journal of Multiphase Flow 34 (2008) 447–460
Fig. 6. Even though oil viscosity is pressure dependent we
have obtained the relative permeabilities considering both,
oil viscosity depending on pressure via Eq. (5) and the case
of viscosity independent on pressure, i.e., l = lob. The later
case is shown, to compare the results with other authors
such as Tang and Firoozabadi (2003), who disregarded
the dependence of oil viscosity with pressure. Maini and
Sarma (1994) did not report the oil relative permeability
curve derived from their experiment. Andarcia et al.
(2002) suggested oil relative permeability curves via Corey
correlation: kro ¼ krmax

o ðð1� Sg � SorÞe=ð1� Sor � SgcÞÞ,
considering Sor = 0.87 and Sor = 0.83 for the 2%-clay
and 5%-clay experiments, respectively, krmax

o ¼ 1 and
Sgc = 0. They stated that relative permeability values larger
than one are obtained from their data, but they dismiss the
finding based on possible errors in the pressure transduc-
ers. Based on this and considering the effect of insufficient
control of temperature in this experiment, we calculate the
oil relative permeability considering three constant DP val-
ues (Fig. 7). First: a DP given by the average of all mea-
sured DPs; second: a DP given by the maximum recorded
value and third: a DP given by the minimum recorded
value. The gap between the curves corresponding to the last
Fig. 6. Oil relative permeabilities obtained from: (a) Tang and Firoozabadi (20
(d) Andarcia et al. (2002), 5% of clay. In (c) and (d), the continuous line co
authors. Dashed line represents the miscibility curve (kro = 1 � Sg), triangles re
Eq. (5) and circles represent those obtained considering l = lob. Continuous
two cases represents the uncertainty that such fluctuations
of pressure drop produce on the relative permeability.
Fig. 7 evidences that though the uncertainty is large; the
curve closest to the conventional behavior (obtained for
the maximum DP) is still evidencing oil relative permeabil-
ities larger than one. Thus, the analysis of relative perme-
ability curves obtained from all experiments here
discussed indicates that oil relative permeability values lar-
ger than one can be obtained. This indicates that other flow
mechanisms ignored in the Darcian formalism could be
taking place in this type of systems.

Non-smooth curves are obtained in all cases (Fig. 6). The
abrupt changes are in most cases not associated to the fluc-
tuations in differential pressure previously analyzed since
the average curve we considered for our calculations
reduces these effects. Nevertheless, depending on the time
scale of existence of non-uniform bubble distributions rela-
tive to the period of time between consecutive measure-
ments, the average curve could be affected by fluctuations.
In the Tang and Firoozabadi (2003) case, there was not rela-
tion among the jumps in the relative permeability curves
(Fig. 6a) and the fluctuations of differential pressure. For
the curves obtained from Maini and Sarma (1994), abrupt
03); (b) Maini and Sarma (1994); (c) Andarcia et al. (2002), 2% of clay and
rrespond to a Corey correlation, with exponent e = 2.1, suggested by the
present values obtained considering the viscosity varying with pressure by

gray lines are only a visual guide to make clearer the data trend.



Fig. 7. Oil relative permeability curves obtained from Andarcia et al.
(2002) reported data, assuming a constant differential pressure during the
experiment. (h) an average DP; (e) a maximum DP; (�) a minimum DP.

Table 2
Simulation parameters

Parameter Values

Network size, nodes 50 � 50
Coordination number 4
Capillary lengths (lc), mm 1
Average capillary radius (�r), lm 100
Range of capillary radii, lm 50–150
Oil viscosity (lo), Pa s 0.89
Oil density (qo), kg/m3 103

Gas viscosity (lg), Pa s 11.6 � 10�6

Gas density (qg), kg/m3 0.663
Bubbles dimensions (lb) 0.3, 1, 3, 10, 30, 100
Contact angle (h),� 0
Interfacial tension (c), N/m 40 � 10�3

Gas bubble shape Circular
Pressure difference (DP), N/m2 105, 3 � 104, 104, 3 � 103, 103, 102
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changes as those seen in the other cases were not observed
(Fig. 6b) and the relatively smooth variations observed
are correlated to changes in the flow regime evidenced by
changes in capillary number. In the case of Andarcia et al.
(2002) there is a correlation between some jumps in the rel-
ative permeability curves (Fig. 6c and d) and the variation
of the average differential pressure. The average differential
pressure curve that we considered in this case corresponds
to the one reported by the authors in their Fig. 4, which is
similar to the curve proposed by Tang and Firoozabadi
(2003) is masking the fluctuations observed at time scales
much smaller than the time scale of the entire experiment
(see Fig. 14 of Andarcia et al. (2002)).

The curves obtained for the three constant DP values
(Fig. 7) represent the behavior of relative permeabilities
independent of the fluctuation of pressure drop in the
Andarcia et al. (2002) experiments; however, the non-con-
ventional behavior of the curves including some ‘‘jumps”
prevails. Such jumps in relative permeabilities were also
obtained through pore network simulations in previous
work (Bravo et al., 2007) and their correlation with connec-
tivity events was demonstrated. Conversely, in Tang and
Firoozabadi (2003) experiment, the first very abrupt
decrease of relative permeability occurred at around 4%
of gas saturation and similarly, in Andarcia et al. (2002)
experiments at about 7% of gas saturation. This similarity
is in correspondence with the similarity of capillary num-
bers used in both experiments.

3. Simulations analysis

From the set of experiments previously discussed, oil rel-
ative permeability values larger than one were indeed
observed. Previous work, based on pore network modeling,
has shown that relative permeabilities larger than one can
be due to the contribution of viscous coupling (Bravo
et al., 2007), however, further studies need to done in order
to explain the differences among the relative permeability
curves obtained from experiments (Fig. 6). In this sense,
we perform a set of simulations through pore network
modeling considering different capillary numbers, which
turns out to be one of the most important parameters con-
trolling the flow dynamics, especially for the transport of a
disconnected phase in porous media (Constantinides and
Payatakes, 1991).

A two dimensional pore network model built on a regu-
lar square lattice was used in this study. The nodes are con-
sidered as having zero volume and the pressure drop and
fluid storage occurs inside cylindrical capillaries, which
have equal length and randomly distributed radius. A pis-
ton like gas–oil interface, characterized by an interfacial
tension (c) and equilibrium contact angle (h) controls the
coexistence of the two fluids inside each capillary. The flu-
ids, described by their density and viscosity, are considered
incompressible. The gas phase is composed of a monodis-
perse bubble distribution and the total number of bubbles
(uniformly distributed in the network) is determined by the
gas saturation. To reach the desired bubble size for each
simulation step, two interfaces are set in the randomly
selected location of each bubble. Both interfaces are moved
and when any of them reaches a node, it is splitted in a
number of new interfaces in all the neighboring capillaries.
Poisseuille law is used to calculate the average velocity for
single-phase flow in a capillary and for one or more inter-
faces in a capillary, the Poiseuille law is used in each
single-phase region, while the capillary pressure gives the
difference in hydrostatic pressure across the interface. Fur-
ther description of the pore network simulator here used is
given in Bravo et al. (2007) while the parameters involved
in the simulations presented below are summarized in
Table 2.

The pore network simulation model assumes that nucle-
ation, growth, coalescence and breakup bubble phenomena
occur in such a way that a near uniform and mono-
dispersed bubble distribution is preserved at the time scales
of the flow (Bravo et al., 2007). This assumption facilitates
the study of the bubble size effect and gas saturation sepa-
rately as well as it reduces the number of parameters
needed if using typical pore network modeling (quasi-static
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and dynamic); however, the simulations will not reflect
experimental results unless this condition is satisfied and
values of Table 2 are representative of the fluids, porous
medium and rock–fluid interactions in the particular exper-
iment. Visualization experiments performed under viscous
flow regime (Lago et al., 2002 and Firoozabadi and
Aronson, 1999) have evidenced that the aforementioned
condition is approximately satisfied for time periods com-
parable to the time scales of flow (which typically is much
smaller than the duration of the experiment); however, we
do not pursuit reproducing a specific experiment, but com-
plement the analysis of the behavior of relative permeabil-
ities when disconnected bubbles, such as those observed
during depressurization experiments, are in the porous
space. Thus, the values of Table 2 just represent a charac-
teristic hypothetical case of fluids and porous media typi-
cally used in depressurization experiments.

3.1. From viscous to capillary flow regime

One of the main factors determining the behavior of
multiphase flow in porous media is the balance between
capillary and viscous forces. This balance determines the
flow regime that governs the dynamics of fluids, and conse-
quently the features that should be captured in the trans-
port equations. To evaluate the impact of the flow regime
in the anomalous behavior evidenced in the previous sec-
tion we perform simulations at six values of pressure gradi-
ent that cover a range of three orders of magnitude.
Consequently a wide range of capillary numbers, calcu-
lated by Eq. (8) using the data offered in Table 2 is evalu-
ated. The capillary pressure is estimated for the average
capillary radius (�r) through Eq. (1).
Fig. 8. (a) Gas distribution in the pore network for Sg ffi 0.04 and lb ffi 30. Aver
oil) are present. (b) Pressure in oil phase given by Po = Pg � Pc. (c) Flow rate
bubble is illustrated. Arrows bellow these maps show the directions of macro
In the simulations, while the pressure gradient, imposed
to the network, decreased, more bubbles moving contrary
to the flow direction were observed. The observation of
pressure maps evidenced locally adverse pressure gradient
in the region occupied by such bubbles due to a local pre-
dominance of capillary pressure. Fig. 8a shows a gas satu-
ration map for Sg ffi 0.04 and bubble length lb ffi 30 (given
by the ratio of the bubble diameter to the average pore
diameter). Bubbles’ velocities (calculated as the average
flow rate through the capillaries occupied by the bubble
divided by the average capillary cross section) indicated
some of them are moving contrary to the flow at network
scale. Fig. 8b illustrates the pressure distribution in the
region occupied by one of these bubbles when a pressure
drop of 1.034 kPa (Ca = 0.025) is imposed to the pore net-
work. Notice the adverse pressure gradient at local scale in
this figure and observe the consequent flow rate in the
x-direction plotted in Fig. 8c. Thus, bubbles motion is
strongly related to the flow regime (viscous or capillary)
at local level, and the evolution of the bubble velocity dis-
tribution during the transition between both regimes would
allow to identify the critical capillary number (Cac) at the
macroscopic scale, as the number where the average bubble
velocity is zero. Fig. 9 illustrates how the bubble velocity
distributions obtained for two different bubble sizes and
two gas saturation values change with the capillary number
(Ca).

It is seen in Fig. 9 that for Ca P 0.82 all the bubbles
have positive velocity, which means that they move gov-
erned by the pressure gradient as in a viscous flow regime.
For Ca 6 0.25 a bi-modal distribution emerges and for
Ca = 2.5 � 10�3 such bi-modal distribution evidences
that the number of bubbles moving in the direction of
age gas saturation is plotted in those capillaries where both phases (gas and
in x direction. In (b) and (c) just a zoom of the region corresponding to a

scopic pressure gradient and flow.



Fig. 9. Gas Bubble velocity distributions for six different flow conditions represented by the capillary number, obtained from Eq. 8 and six macroscopic
pressure gradients imposed to the pore network (Table 2). (a) lb = 3 and Sg ffi 0.04, (b) lb = 3 and Sg ffi 0.40, (c) lb = 30 and Sg ffi 0.04 and (d) lb = 30 and
Sg ffi 0.40.
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macroscopic pressure gradient is approximately equal to
the number moving in the opposite direction. For the bub-
ble sizes and gas saturations studied in Fig. 9, the critical
capillary number, Cac, can be located in the range from
10�2 to 10�3. Thus, around these values the flow regime
would suffer a transition from predominantly viscous to
predominantly capillary or vice verse.

With this in mind, let us go back to the experimentally
derived relative permeabilities, shown in Fig. 5. According
to our previous analysis, it can be said that Maini and Sar-
ma (1994) experiment was performed under a viscous flow
regime that went from completely viscous, at the beginning
of the test, to predominantly viscous at the end of the test.
However, the experiment of Tang and Firoozabadi (2003)
occurred under a predominantly viscous flow regime as
well as the tests of Andarcia et al. (2002) whose behavior
is observed to be more unstable. This result is in agreement
with the differences of behavior observed in the relative
permeability curves derived from these experiments (see
Fig. 6).

The curves obtained from the Maini and Sarma (1994)
experiment show particular features not observed in other
experiments. Primarily, the absence of abrupt changes in
the curve (Fig. 6b) is in correspondence with the minimum
probability of connectivity events in a completely viscous
flow regime, and the considerably improved probability
of break up events (Lago et al., 2002). Secondly, values lar-
ger than one are present up to gas saturation of 18 %, just
the value where the capillary number indicates that a tran-
sition from completely to predominantly viscous flow
regime sets in.
3.2. Oil relative permeability

To complement the previous analysis, we obtain relative
permeability curves using pore network simulations. Eq.
(6) allows to calculate the oil relative permeabilities accord-
ing to the Darcean approach, which are apparent values
considering that the conventional Darcean formulation
for two-phase flow neglects the contribution of viscous
coupling explicitly captured in the generalized flow equa-
tions (Kalaydjian, 1990)

vo ¼
k � kro

lo

ð�rpoÞ þ
k � kgo

lg

ð�rpgÞ ð9Þ

vg ¼
k � krg

lg

ð�rpgÞ þ
k � kog

lo

ð�rpoÞ ð10Þ
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where k is the absolute permeability, kro and krg are the rel-
ative permeabilities to oil and gas, respectively and kgo and
kog are the corresponding coupling coefficient. Considering
that there is not saturation gradient, the capillary pressure
gradient is zero and consequently $Po = $ Pg. Thus, Eqs.
(9) and (10) can be rewritten as

vo ¼
k � krap

o

lo

ð�rpoÞ ð11Þ

vg ¼
k � krap

g

lg

ð�rpoÞ ð12Þ

with apparent relative permeabilities given by

krap
g ¼ krg þ

lg

lo

kog ¼ krg 1þ
lg

lo

kog

krg

� �
ð13Þ

krap
o ¼ kro þ

lo

lg

kgo ¼ kro 1þ lo

lg

kgo

kro

 !
ð14Þ

Eqs. (13) and (14) indicate that in principle apparent rela-
tive permeabilities larger than one can be obtained. How-
ever, the physics behind the curves’ behavior is rigorously
described if the viscous coupling and relative permeability
terms are considered separately in the flow equations as
in the generalized flow equations. Thus, the four transport
coefficients are obtained in our simulations following the
method proposed by Rose (1988), based on the difference
that liquid and gas densities generates on pressure gradient,
when the flow is parallel and perpendicular to the gravity.
Fig. 10. (a) and (b) Apparent oil relative permeability curves obtained from co
Oil relative permeability curves from generalized equations (Eqs. (15)–(18)) fo
According to Rose (1988), Eqs (9) and (10) are written for
both flow conditions, hence four, instead of two, equations
are available to derive the four transport coefficients. The
equations are

q?o ¼ kA � kro

lo

Dpo

L
� kgo

lg

Dpg

L

 !
ð15Þ

q?g ¼ kA � krg

lg

Dpg

L
� kog

lo

Dpo

L

 !
ð16Þ

q==o ¼ kA � kro

lo

Dpo

L
� qog

� �
� kgo

lg

Dpg

L
� qgg

� � !
ð17Þ

q==g ¼ kA � krg

lg

Dpg

L
� qgg

� �
� kog

lo

Dpo

L
� qog

� � !
ð18Þ

Here, q? and q// represent the volumetric flow rate for per-
pendicular and parallel to gravity flow conditions, respec-
tively. The product kA is determined by solving the
single-phase case, where according to Darcy’s law
q = (kA/l)(Dp/L). Eqs. (15)–(18) constitute the system of
equations from where we obtain the four transport coeffi-
cients considering again that Dpo = Dpg and the data sum-
marized in Table 2.

Fig. 10a and b show the apparent oil relative permeabil-
ity curves obtained via pore network simulations for
Ca = 0.25 and Ca = 0.025, respectively. Fig. 10c and d
illustrate the oil relative permeabilities, that do not contain
the input of viscous coupling, for the same capillary num-
nventional Darcean approach for Ca = 0.25 and Ca = 0.025, respectively.
r: (c) Ca = 0.25 and (d) Ca = 0.025.



Fig. 11. Effect of capillary number and bubble sizes on the ratio of terms in Eqs. (9) and (10).
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bers, respectively. Apparent relative permeabilities larger
than one are observed in both, Fig. 10a and b, but this unu-
sual behavior is considerably smaller in Fig. 10b and even
unobserved for the three largest bubble sizes evaluated of
10, 30, and 100, respectively.

In general terms, according to Fig. 9, for a capillary
number of 0.25 the dynamics occurs under a completely
viscous flow regime while for 0.025 the regime is predomi-
nantly viscous, but capillary forces dominate more than
30% of bubbles velocities (Fig. 9d, which corresponds to
lb = 30 and Sg = 0.4, evidencing that capillary forces con-
trolling less than 30% of bubbles). The physical conse-
quences of the differences in flow regime at pore scale are
known. In general as the capillary forces become more rel-
evant, more bubble entrapment is expected (see Fig. 9).
Macroscopic consequences are reflected in apparent oil rel-
ative permeability values smaller than those obtained for
larger capillary numbers as observed comparing Fig. 10a
and b.

Additionally, bubble growth and coalescence are
favored respect to bubble break up when viscous forces
lose dominance. Thus, when the gas saturation increases
not only the number of bubbles can increase but also their
size. Our simulator does not consider both ways of increas-
ing the gas saturation at the same time, but we estimate the
effect of bubble size on relative permeability by obtaining
the curves for bubble sizes ranging from 0.3 to 100 times
the capillary length. From these curves we can infer that
for experiments where the flow regime range from com-
pletely to predominantly viscous, the oil relative permeabil-
ity curve would reach the maximum for a considerably
smaller gas saturation value due to the increase in bubble
size and the decrease in capillary number effect, as in Maini
and Sarma (1994) experiment.

Notice, that when the generalized formulation was con-
sidered and consequently both transport coefficients are
separately studied, the relative permeability recovers its
usual magnitude and no values larger than one exist in
the curves of Fig. 10c and d. As a matter of fact, notice
in Fig. 10d that for lb P 10 the typical behaviors below
of the miscibility line are obtained. This is basically because
for Ca = 0.025 the predominantly viscous forces do not
impede the effect of capillary forces on the bubble dynam-
ics. On the other hand, relative permeabilities above the
miscibility line, suggest that the oil phase have more porous
space to flow than the porous space free of gas phase. This
is a consequence of the fact that bubbles velocities are lar-
ger than the velocity of surrounding oil, thus gas is not
obstructing the oil flow.

To evaluate the relative contribution of both terms,
Darcean and viscous coupling on the volumetric flow rates
given by the generalized Eqs. (9) and (10), plots of the
weight or relative contribution of these terms, are offered
in Fig. 11a and b for Ca = 0.25 and Ca = 0.025, respec-
tively. Coupling terms satisfy the Onsager relation, i.e.,
kgo/lg = kog/lo, thus only one of them is shown in the fig-
ure. It is observed that for the curves corresponding to oil,
that larger bubble sizes imply smaller weight of both terms,
being this effect less notable in Fig. 11b, where Ca = 0.025.
From the comparison of Fig. 11a and b it is seen that the
coupling term contribution to the volumetric oil rate is lar-
ger for Ca = 0.25 than for Ca = 0.025, and the contribu-
tion of both terms tend to be comparable as the gas
saturation increase.

4. Conclusions

‘‘Anomalous” behavior of oil relative permeabilities can
be observed if the conventional Darcean approach is used
to calculate them. However, it is important to understand
the physics behind such unconventional curves. In this
sense relative permeability larger than one is physically
acceptable only if we keep in mind that this is an apparent
magnitude, given that in the Darcy equation for two-phase
flow, the coupling between phases is explicitly ignored. If
relative permeabilities were obtained through the general-
ized formulation, getting relative permeability larger than
one would be physically unacceptable in the context of
laminar flow conditions.

In this paper we compiled and analyzed experiments
that generated apparent relative permeabilities larger than
one. This behavior, not previously reported according to
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our literature review, was demonstrated to be consequence
of neglecting the contribution of momentum transfer
between fluid phases in the Darcean approach for the
description of the two-phase flow in porous media.

We related the fluctuations in the differential pressure
with the gas bubble sizes and distribution and found a rela-
tion between the amplitude of fluctuations and the macro-
scopic capillary pressure.

The effect of the capillary number on the relative perme-
ability curves was investigated and it can be concluded that
depending on this number the contribution of viscous cou-
pling could lead to apparent relative permeability values
larger than one or not. Experimentalists should be aware
of the capillary number value in their experiments. Appar-
ent relative permeabilities larger than one could not be
observed in experiments where the capillary number is
small enough as to consider a capillary flow regime.
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